当前链接位置:主页>>论文阅读列表

 

  整理了自己的paper reaing目录,每篇论文附上了自己发在B站的讲解视频链接。

  以下整理是按照专题来排列的,如果你更习惯按照更新日期来看,可以跳转到这个链接:按日期更新列表

 

【NeRF神经辐射场】

  ----------------单场景NeRF----------------

      ● NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020)

          视频链接:论文讲解

          描述:第一篇NeRF原文

      ● Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields (ICCV 2021)

          视频链接:论文讲解

          描述:多尺度抗锯齿的NeRF

      ● NeRF++: Analyzing and Improving Neural Radiance Fields

          视频链接:论文讲解

          描述:NeRF++ 可处理远景的NeRF

      ● Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields (CVPR 2022)

          视频链接:论文讲解

          描述:Mip-NeRF360 抗锯齿超远景NeRF

      ● NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections (CVPR 2021)

          视频链接:论文讲解

          描述:NeRF-W 自然条件下的NeRF

      ● Block-NeRF: Scalable Large Scene Neural View Synthesis (CVPR 2022)

          视频链接:论文讲解

          描述:超大场景的NeRF

  ----------------泛化性NeRF----------------

      ● pixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)

          视频链接:论文讲解

          描述:具有泛化性的NeRF

      ● IBRNet: Learning Multi-View Image-Based Rendering (CVPR 2021)

          视频链接:论文讲解

          描述:IBRNet 利用NeRF做可泛化视角插值

      ● MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo (ICCV 2021)

          视频链接:论文讲解

          描述:MVSNeRF 基于Cost-volume的NeRF

  ----------------NeRF渲染加速----------------

      ● FastNeRF: High-Fidelity Neural Rendering at 200FPS (ICCV 2021)

          视频链接:论文讲解

          描述:FastNeRF 快速渲染辐射场

      ● SqueezeNeRF: Further factorized FastNeRF for memory-efficient inference

          视频链接:论文讲解

          描述:SqueezeNeRF 低内存快速渲染辐射场

  ----------------NeRF训练加速----------------

      ● Point-NeRF: Point-based Neural Radiance Fields (CVPR 2022)

          视频链接:论文讲解

          描述:用MVS及点云代理加速NeRF的训练

      ● Plenoxels: Radiance Fields without Neural Networks (CVPR 2022)

          视频链接:论文讲解

          描述:Plenoxels 神经辐射场,但是没有神经

      ● Instant Neural Graphics Primitives with a Multiresolution Hash Encoding (SIGGRAPH 2022)

          视频链接:论文讲解

          描述:Instant-NGP 基于哈希编码的MLP

  ----------------动态NeRF----------------

      ● D-NeRF: Neural Radiance Fields for Dynamic Scenes (CVPR 2020)

          视频链接:论文讲解

          描述:D-NeRF 可形变物体的NeRF

      ● Nerfies: Deformable Neural Radiance Fields (ICCV 2021)

          视频链接:论文讲解

          描述:Nerfies 简单自拍重建动态NeRF

      ● HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields (Siggraph Asian 2021)

          视频链接:论文讲解

          描述:HyperNeRF 拓扑可变的变形场

      ● D2NeRF: Self-Supervised Decoupling of Dynamic and Static Objects from a Monocular Video (NeurIPS 2022)

          视频链接:论文讲解

          描述:D2NeRF 视频中的动静物体分离

 

【3D重建】

  ----------------3D表示----------------

      ● DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation (CVPR 2019)

          视频链接:论文讲解

          描述:DeepSDF 符号距离场&三维重建

  ----------------多视角重建----------------

      ● NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction (NeurIPS 2021)

          视频链接:论文讲解

          描述:NeuS 基于体渲染的多视角重建

 

【GAN生成模型】

  ----------------图像GAN----------------

      ● Progressive growing of GANs for improved quality, stability, and variation (ICLR 2018)

          视频链接:论文讲解

          描述:PGGAN 递进生成网络

      ● A style-based generator architecture for generative adversarial networks (CVPR 2019)

          视频链接:论文讲解

          描述:StyleGAN 风格化可控图像生成

      ● Analyzing and Improving the Image Quality of StyleGAN (CVPR 2020)

          视频链接:论文讲解

          描述:StyleGAN2 更可控的图像生成

      ● StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021)

          视频链接:论文讲解

          描述:用文本编辑GAN图像

      ● Style Transformer for Image Inversion and Editing (CVPR 2022)

          视频链接:论文讲解

          描述:用Transformer做图像风格编辑

  ----------------3维GAN----------------

      ● GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis (NIPS 2020)

          视频链接:论文讲解

          描述:用NeRF+GAN做三维生成

      ● pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis (CVPR 2021)

          视频链接:论文讲解

          描述:Pi-GAN 周期隐式三维GAN

      ● GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields (CVPR 2021最佳论文)

          视频链接:论文讲解

          描述:GIRAFEE CVPR2021最佳论文 可组合多物体的三维GAN

      ● StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation (CVPR 2022)

          视频链接:论文讲解

          描述:StyleSDF 高分辨率图像与几何生成

      ● Disentangled3D: Learning a 3D Generative Model with Disentangled Geometry and Appearance from Monocular Images (Arxiv 2022-03-29)

          视频链接:论文讲解

          描述:Disentangled3D-GAN 将外观与几何解耦

  ----------------视频GAN----------------

      ● Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks (ICLR 2022)

          视频链接:论文讲解

          描述:隐式生成模型合成视频

 

【图像】

  ----------------图像分割----------------

      ● DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting (CVPR 2022)

          视频链接:论文讲解

          描述:DenseCLIP 用文本指导图像分割

  ----------------图像超分----------------

      ● Learning Continuous Image Representation with Local Implicit Image Function (CVPR 2021)

          视频链接:论文讲解

          描述:图像局部隐式表示

      ● Continuous Spectral Reconstruction from RGB Images via Implicit Neural Representation (ArXiv 2021-12-24)

          视频链接:论文讲解

          描述:从RGB图像重建高光谱图像

      ● PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models (CVPR 2020)

          视频链接:论文讲解

          描述:PULSE 用GAN巧解超分辨率

  ----------------视频超分----------------

      ● BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment (CVPR 2022)

          视频链接:论文讲解

          描述:BasicVSR++ SOTA的视频超分辨率算法

 

【人脸】

  ----------------人脸重建----------------

      ● Self-Supervised Robustifying Guidance for Monocular 3D Face Reconstruction (ArXiv 2021-12-29)

          视频链接:论文讲解

          描述:无监督RGB三维人脸重建

  ----------------人脸建模----------------

      ● Text and Image Guided 3D Avatar Generation and Manipulation (ArXiv 2021-12-22)

          视频链接:论文讲解

          描述:用文本语义控制三维人脸建模

  ----------------人脸风格化----------------

      ● JoJoGAN: One Shot Face Stylization (ArXiv 2022-01-12)

          视频链接:论文讲解

          描述:生成动漫风格的人脸图像

 

【点云】

  ----------------点云网络----------------

      ● PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR 2017)

          视频链接:论文讲解

          描述:PointNet 点云网络开山之作

      ● PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS 2017)

          视频链接:论文讲解

          描述:PointNet++ 层级点云特征学习

      ● Point Transformer (ICCV 2021)

          视频链接:论文讲解

          描述:点云上的Transformer

      ● Fast Point Transformer (ArXiv 2021-12-09)

          视频链接:论文讲解

          描述:快速点云Transformer

      ● PointCLIP: Point Cloud Understanding by CLIP (CVPR 2022)

          视频链接:论文讲解

          描述:用CLIP巧解点云分类

  ----------------点云降噪----------------

      ● Score-Based Point Cloud Denoising (ICCV 2021)

          视频链接:论文讲解

          描述:用极大似然法做点云降噪

 

【普适网络结构】

      ● Learning Transferable Visual Models From Natural Language Supervision (ICML 2021)

          视频链接:论文讲解

          描述:CLIP 文本和图像的跨模态匹配

 

【网格】

  ----------------泛函映射----------------

      ● Functional maps: A flexible representation of maps between shapes (TOG 2012)

          视频链接:论文讲解

          描述:Functional Maps 同构流形上的泛函映射

      ● Deep Functional Maps: Structured Prediction for Dense Shape Correspondence Emanuele (ICCV 2017)

          视频链接:论文讲解

          描述:Deep Functional Maps 深度泛函映射